Political Science 352

Fall 2002

Handout 1, Some Definitions

Cartesian products

Def^{**n**}: The *cartesian product* of two sets A and B, which is denoted $A \times B$, is the set of all pairs such the first element in each pair is a member of A and the second is a member of B.

e.g.: Let $A = \{\text{ham, turkey}\}\ \text{and}\ B = \{\text{white, wheat, rye}\}$. What is the new set $A \times B$?

 $A \times B = \{(ham, white), (ham, wheat), (ham, rye), (turkey, white), (turkey, wheat), (turkey, rye)\}.$

Elements of a finite extensive form game

- 1. actions
- 2. choice nodes
- 3. players assigned to choice nodes
- 4. information sets (sets of choice nodes)
- 5. terminal nodes
- 6. payoffs assigned to terminal nodes

Some restrictions (rules) for what an extensive form game can look like.

- 1. There must be a unique path to every node.
- 2. No loops.
- 3. Restrictions on information sets:
 - (a) Each info set includes choice nodes belonging to at most one player.
 - (b) Same actions at every choice node in same info set.
 - (c) Perfect recall.

Def^{<u>n</u>}: A singleton information set contains only one choice node.

 $\mathbf{Def}^{\underline{\mathbf{n}}}$: In a game of perfect information, all information sets are singletons. In a game of imperfect information, at least one information set contains more than one choice node.

Complete strategies

Def^{<u>n</u>}: A *pure strategy in an extensive form game* assigns an action for every information set a player has. [THIS IS VERY IMPORTANT TO UNDERSTAND!!]

Relationship between the normal and extensive form

Consider an extensive form game with n players. Let S_i be the set of *complete* strategies in the game for player i. Then $S = S_1 \times S_2 \times S_3 \ldots \times S_n$ is the set of outcomes in the associated normal form game.¹

Claim: Every extensive form game has a unique normal form representation.

¹This is more compactly written $S = \times_{i=1}^{n} S_i$.