Fall 2002

Handout 3

The expected utility representation

Defn: A person's preferences over the lotteries in $\Delta(X)$ (where X is a set of outcomes) can be represented by an expected utility function if there exists a function $u: X \rightarrow \mathbb{R}$ such that for any $p, q \in \Delta(X)$,

$$
p \succ q \Leftrightarrow E U(p) \equiv \sum_{i=1}^{n} p_{i} u\left(x_{i}\right)>\sum_{i=1}^{n} q_{i} u\left(x_{i}\right) \equiv E U(q) .
$$

Axioms that imply EU-representable preferences

Consider a set of outcomes X, and lotteries $\Delta(X)$.
A1 (completeness): For any $p, q \in \Delta(X)$, if $p \succ q$ then not $q \succ p$.
A2 (neg. transitivity): For any $p, q, r \in \Delta(X)$, if $p \succ q$, then either $p \succ r$ or $r \succ q$. (Recall that neg trans implies trans.)

A3 ("Archimedian", or continuity): For $p, q, r \in \Delta(X)$ s.t. that $p \succ q \succ r, \exists \alpha, \beta \in(0,1)$ s.t. $(\alpha p,(1-\alpha) r) \succ q \succ(\beta p,(1-\beta) r)$.

A4 (substitution, or "independence"): For any $p, q, r \in \Delta(X)$, if $p \succ q$, then for $\alpha \in(0,1)$, $(\alpha p,(1-\alpha) r) \succ(\alpha q+(1-\alpha) r)$.
$\operatorname{Th} \underline{\underline{m}}$ (: a) A dmkrs prefs \succ on $\Delta(X)$ can be represented by an expected utility function iff they satisfy A1, A2, A3, and A4.

Compound lotteries

Objects like $(\alpha p,(1-\alpha) r)$ are compound lotteries - the lottery you get when you have an α chance of getting the lottery p, and a $1-\alpha$ chance of getting the lottery r.

The Allais paradox, an example of a common violation of A4
You have a choose between two gambles:
$\mathrm{G} 1=\$ 1 \mathrm{~m}, \mathrm{G} 2=(.01$ on $\$ 0, .89$ on $\$ 1 \mathrm{~m}, .10$ on $\$ 5 \mathrm{~m})$,
and then between two more,
$\mathrm{G} 3=(.89$ on $0, .11$ on 1 m$), \mathrm{G} 4=(.9$ on $0, .1$ on 5 m$)$.
People often express the preferences $G 1 \succ G 2$ and $G 4 \succ G 3$. But this violates the substitution axiom, as show by

	probability					probability							
	.01	.10	.89						vs.		.01	.10	.89
:---	:---	:---	:---	:---	:---								
G1	1 m	1 m	1 m		G3	1 m	1 m	0 m					
:---	:---	:---	:---	:---	:---								
G2	0 m	5 m	1 m		G4	0 m	5 m	0 m					
:---	:---	:---	:---	:---	:---								

Now we show that you can't represent these expressed preferences with an EU function (which we already know must be the case from the Theorem above):

Let $X=\{0,1 \mathrm{~m}, 5 \mathrm{~m}\}$. Let $u(5 m)=1, u(0)=0$, and keep $u(1 m)$ "free." (Why can we do this without losing any generality?)
$\mathrm{G} 1 \succ \mathrm{G} 2$ implies $u(1 m)>.01 * 0+.89 * u(1 m)+.10 * 1$, but this implies

$$
u(1 m)>.89 u(1 m)+.1
$$

or

$$
.11 u(1 m)>.1
$$

And G3 $\prec G 4$ implies

$$
\begin{gathered}
.89 u(0)+.11 u(1 m)<.9 u(0)+.1 u(5 m) \\
.11 u(1 m)<.1
\end{gathered}
$$

But this is a contradiction, so there is no eu function that can represent these preferences.
Utility functions over continuous sets of outcomes and risk attitudes

Defn: A person is risk averse if she strictly prefers to receive the expected value of a lottery for sure to the lottery itself. Formally, if for numerical outcomes x and y, she has

$$
\alpha x+(1-\alpha) y \succ(\alpha x,(1-\alpha) y) \text { for all } \alpha \in(0,1)
$$

Two concepts of risk attitude

1) Absolute risk attitude: The idea just presented, curvature of a utility function defined on a continuous, numerical set of outcomes.
2) Relative risk attitude: "Rumsfeld is more risk acceptant than Powell." Here, idea is that A is more risk acceptant (averse) than B if A will take (reject) gambles that B would reject (accept). This does not presume any underlying metric in outcomes.

Definition of a normal form game

A normal form game is

1. A set of players $I=\{1,2, \ldots, n\}$.
2. A set of strategies available to each player i, S_{i}.
3. A utility function $u_{i}: S_{1} \times S_{2} \times \ldots \times S_{n} \rightarrow \mathbb{R}$ for each player i.

Formally, we will often write $\Gamma=\left\langle I, S_{i}, u_{i}\right\rangle$.

Payoff notation

In general, $u_{1}\left(s_{i}, s_{j}\right)$ is the utility number for player 1 assigned when 1 chooses strategy $s_{i} \in S_{1}$ and player 2 chooses $s_{j} \in S_{2}$.

What if the number of players is more than 2? Then $u_{1}\left(s_{1}, s_{2}, s_{3}, \ldots\right)$ is the utility payoff player 1 gets when she chooses s_{1} and player 2 chooses $s_{2} \in S_{2}$, etc. For example, $u_{1}(F, F, F, P, F, P)$ means what in a six player SoN game?

For convenience, we will often write (for $n>2$ player games) $u_{i}\left(s_{i}, s_{-i}\right)$ for player i 's payoff, where s_{i} is the strategy i is choosing and s_{-i} is the list of strategies that everyone else is choosing. ($-i$ here means something like "not person i ".) Thus in the example in the last paragraph, $s_{i}=F$ and $s_{-i}=(F, F, P, F, P)$.

Payoffs given beliefs about what other player may choose

We can extend the notation for utility payoffs for outcomes to represent a player's expected utility for choosing a given strategy s_{i} given that the player has some belief about what the other is likely to do.

Consider a two player game in which 1's strategies are $S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{m}\right\}$ and 2's strategies are $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$.

Then 1's belief about player 2's likely play is a probability distribution on T, thus an element $\tau \in \Delta(T)$. Written out, $\tau=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)$, where $\tau_{i}=\operatorname{Pr}\left(2\right.$ plays $\left.t_{i}\right)$.

For the general case where 1 plays some strategy $s_{i} \in S$,

$$
u_{1}\left(s_{i}, \tau\right)=\sum_{j=1}^{n} \tau_{j} u_{1}\left(s_{i}, t_{j}\right) .
$$

Definition of a best reply

Def ${ }^{\mathbf{n}}$: s_{i} is a best reply given belief τ for player 1 if she has $u_{1}\left(s_{i}, \tau\right) \geq u_{1}\left(s_{j}, \tau\right)$ for all strategies $s_{j} \in S_{1}$.

Defn: The set of best replies for player 1 is $B R_{1}(\tau)=\left\{s_{i}: s_{i}\right.$ is a best reply given $\left.\tau\right\}$.
(Note that the ":" in the last definition reads "such that.")

Never a best reply

First concept of a bad strategy that a rational player could rule out:
Defn: $s_{i} \in S$ is never a best reply if there does not exist $\tau \in \Delta(T)$ s.t. $u\left(s_{i}, \tau\right) \geq u(s, \tau)$ for all $s \in S$.
(Note: Now we are talking about two player games and I am using S for 1's strategy set and T for 2's strategy set.)

Question: Is it true in general that if a strategy s_{i} gives better payoffs than another strategy s_{j} for every possible strategy choice by player 2 , then it is does better for any belief $\tau \in \Delta(T)$? Yes.

Claim: For two strategies (acts) s_{i} and $s_{j}, u\left(s_{i}, \tau\right)>u\left(s_{j}, \tau\right)$ for all $\tau \in \Delta(T)$ iff $u\left(s_{i}, t\right)>$ $u\left(s_{j}, t\right)$ for all $t \in T$.

The idea of mixed strategies

Suppose we give players the option of choosing a probability distribution on the set of available pure strategies.

If 1's set of pure strategies (actions, acts) is $S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$, then $\Delta(S)$ is the set of
mixed strategies.
This is exactly parallel to the idea of $\tau=\left(\tau_{1}, \tau_{2}, \ldots\right)$, except there we were talking about τ as player 1's beliefs about 2's likely play, and here we are talking about σ as 1's actual strategy.

If player 1 has m available strategies in an $m \times n$ normal form game, we write $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$, where σ_{i} is the probability that player 1 choose strategy $s_{i} \in S$.

Expected payoff given a mixed strategy σ and a belief τ

Defn: A person's eu for the mixed strategy $\sigma \in \Delta(S)$, given beliefs about the other's play $\tau \in \Delta(T)$, is

$$
u(\sigma, \tau)=\sum_{i=1}^{m} \sigma_{i} u\left(s_{i}, \tau\right)=\sum_{i=1}^{m} \sigma_{i} \sum_{j=1}^{n} \tau_{j} u\left(s_{i}, t_{j}\right) .
$$

Strongly dominated strategies

A second concept of what a "bad strategy" would be for a rational player in a game situation:
Defn: $\sigma \in \Delta(S)$ is strongly dominated by $\sigma^{\prime} \in \Delta(S)$ if $u\left(\sigma^{\prime}, t\right)>u(\sigma, t)$ for all $t \in T$.
In words, strategy σ gives a worse expected payoff for player 1 tahn does strategy σ^{\prime} no matter what player 2 chooses.

Equivalence of the two concepts in 2 person games

$\mathbf{T h} \underline{\underline{m}}$:: If there are 2 players, then $\sigma \in \Delta(S)$ is never a best reply iff there exists $\sigma^{\prime} \in \Delta(S)$ s.t. σ is strongly dominated by σ^{\prime}.

In words, if there is no set of beliefs for which a strategy is optimal (a best reply), then there must exist some other strategy that is better than it in all possible circumstances regarding the other player's play.

