Political Science 352

Fall 2002

Handout 3

The expected utility representation

Def^{<u>n</u>}: A person's preferences over the lotteries in $\Delta(X)$ (where X is a set of outcomes) can be represented by an *expected utility function* if there exists a function $u: X \to \mathbb{R}$ such that for any $p, q \in \Delta(X)$,

$$p \succ q \Leftrightarrow EU(p) \equiv \sum_{i=1}^{n} p_i u(x_i) > \sum_{i=1}^{n} q_i u(x_i) \equiv EU(q).$$

Axioms that imply EU-representable preferences

Consider a set of outcomes X, and lotteries $\Delta(X)$.

A1 (completeness): For any $p, q \in \Delta(X)$, if $p \succ q$ then not $q \succ p$.

A2 (neg. transitivity): For any $p, q, r \in \Delta(X)$, if $p \succ q$, then either $p \succ r$ or $r \succ q$. (Recall that neg trans implies trans.)

A3 ("Archimedian", or continuity): For $p, q, r \in \Delta(X)$ s.t. that $p \succ q \succ r, \exists \alpha, \beta \in (0, 1)$ s.t. $(\alpha p, (1 - \alpha)r) \succ q \succ (\beta p, (1 - \beta)r).$

A4 (substitution, or "independence"): For any $p, q, r \in \Delta(X)$, if $p \succ q$, then for $\alpha \in (0, 1)$, $(\alpha p, (1 - \alpha)r) \succ (\alpha q + (1 - \alpha)r)$.

Th^m (: a) A dmkrs prefs \succ on $\Delta(X)$ can be represented by an expected utility function iff they satisfy A1, A2, A3, and A4.

Compound lotteries

Objects like $(\alpha p, (1 - \alpha)r)$ are compound lotteries – the lottery you get when you have an α chance of getting the lottery p, and a $1 - \alpha$ chance of getting the lottery r.

The Allais paradox, an example of a common violation of A4

You have a choose between two gambles:

G1 = \$1m, G2 = (.01 on \$0, .89 on \$1m, .10 on \$5m),

and then between two more,

G3 = (.89 on 0, .11 on 1m), G4 = (.9 on 0, .1 on 5m).

People often express the preferences $G1 \succ G2$ and $G4 \succ G3$. But this violates the substitution axiom, as show by

	probability					probability			
	.01	.10	.89	. WG		.01	.10	.89	
G1	1m	1m	1m	v	G3	1m	1m	0m	
G2	$0\mathrm{m}$	$5\mathrm{m}$	$1\mathrm{m}$		G4	$0\mathrm{m}$	$5\mathrm{m}$	$0\mathrm{m}$	

Now we show that you can't represent these expressed preferences with an EU function (which we already know must be the case from the Theorem above):

Let $X = \{0, 1m, 5m\}$. Let u(5m) = 1, u(0) = 0, and keep u(1m) "free." (Why can we do this without losing any generality?)

 $G1 \succ G2$ implies u(1m) > .01 * 0 + .89 * u(1m) + .10 * 1, but this implies

$$u(1m) > .89u(1m) + .1$$

or

.11u(1m) > .1

And G3 \prec G4 implies

$$.89u(0) + .11u(1m) < .9u(0) + .1u(5m)$$

.11u(1m) < .1

But this is a contradiction, so there is no eu function that can represent these preferences.

Utility functions over continuous sets of outcomes and risk attitudes

Def^{<u>n</u>}: A person is *risk averse* if she strictly prefers to receive the expected value of a lottery for sure to the lottery itself. Formally, if for numerical outcomes x and y, she has

 $\alpha x + (1 - \alpha)y \succ (\alpha x, (1 - \alpha)y)$ for all $\alpha \in (0, 1)$.

Two concepts of risk attitude

1) Absolute risk attitude: The idea just presented, curvature of a utility function defined on a continuous, numerical set of outcomes.

2) Relative risk attitude: "Rumsfeld is more risk acceptant than Powell." Here, idea is that A is more risk acceptant (averse) than B if A will take (reject) gambles that B would reject (accept). This does not presume any underlying metric in outcomes.

Definition of a normal form game

A normal form game is

- 1. A set of players $I = \{1, 2, ..., n\}$.
- 2. A set of strategies available to each player i, S_i .
- 3. A utility function $u_i: S_1 \times S_2 \times \ldots \times S_n \to \mathbb{R}$ for each player *i*.

Formally, we will often write $\Gamma = \langle I, S_i, u_i \rangle$.

Payoff notation

In general, $u_1(s_i, s_j)$ is the utility number for player 1 assigned when 1 chooses strategy $s_i \in S_1$ and player 2 chooses $s_j \in S_2$.

What if the number of players is more than 2? Then $u_1(s_1, s_2, s_3, ...)$ is the utility payoff player 1 gets when she chooses s_1 and player 2 chooses $s_2 \in S_2$, etc. For example, $u_1(F, F, F, P, F, P)$ means what in a six player SoN game?

For convenience, we will often write (for n > 2 player games) $u_i(s_i, s_{-i})$ for player *i*'s payoff, where s_i is the strategy *i* is choosing and s_{-i} is the list of strategies that everyone else is choosing. (-i here means something like "not person *i*".) Thus in the example in the last paragraph, $s_i = F$ and $s_{-i} = (F, F, P, F, P)$.

Payoffs given beliefs about what other player may choose

We can extend the notation for utility payoffs for outcomes to represent a player's *expected* utility for choosing a given strategy s_i given that the player has some belief about what the other is likely to do.

Consider a two player game in which 1's strategies are $S = \{s_1, s_2, s_3, \ldots, s_m\}$ and 2's strategies are $T = \{t_1, t_2, \ldots, t_n\}$.

Then 1's belief about player 2's likely play is a probability distribution on T, thus an element $\tau \in \Delta(T)$. Written out, $\tau = (\tau_1, \tau_2, \ldots, \tau_n)$, where $\tau_i = Pr(2 \text{ plays } t_i)$.

For the general case where 1 plays some strategy $s_i \in S$,

$$u_1(s_i, \tau) = \sum_{j=1}^n \tau_j u_1(s_i, t_j).$$

Definition of a best reply

Def^{<u>n</u>}: s_i is a best reply given belief τ for player 1 if she has $u_1(s_i, \tau) \ge u_1(s_j, \tau)$ for all strategies $s_j \in S_1$.

Def^{<u>n</u>}: The set of best replies for player 1 is $BR_1(\tau) = \{s_i : s_i \text{ is a best reply given } \tau\}.$

(Note that the ":" in the last definition reads "such that.")

Never a best reply

First concept of a *bad strategy* that a rational player could rule out:

Def^{<u>n</u>}: $s_i \in S$ is never a best reply if there does not exist $\tau \in \Delta(T)$ s.t. $u(s_i, \tau) \ge u(s, \tau)$ for all $s \in S$.

(Note: Now we are talking about two player games and I am using S for 1's strategy set and T for 2's strategy set.)

Question: Is it true in general that if a strategy s_i gives better payoffs than another strategy s_j for every possible strategy choice by player 2, then it is does better for any belief $\tau \in \Delta(T)$? Yes.

Claim: For two strategies (acts) s_i and s_j , $u(s_i, \tau) > u(s_j, \tau)$ for all $\tau \in \Delta(T)$ iff $u(s_i, t) > u(s_j, t)$ for all $t \in T$.

The idea of mixed strategies

Suppose we give players the option of choosing a probability distribution on the set of available pure strategies.

If 1's set of pure strategies (actions, acts) is $S = \{s_1, s_2, \ldots, s_m\}$, then $\Delta(S)$ is the set of

mixed strategies.

This is exactly parallel to the idea of $\tau = (\tau_1, \tau_2, \ldots)$, except there we were talking about τ as player 1's beliefs about 2's likely play, and here we are talking about σ as 1's actual strategy.

If player 1 has m available strategies in an $m \times n$ normal form game, we write

 $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_m)$, where σ_i is the probability that player 1 choose strategy $s_i \in S$.

Expected payoff given a mixed strategy σ and a belief τ

Defn: A person's eu for the mixed strategy $\sigma \in \Delta(S)$, given beliefs about the other's play $\tau \in \Delta(T)$, is

$$u(\sigma,\tau) = \sum_{i=1}^m \sigma_i u(s_i,\tau) = \sum_{i=1}^m \sigma_i \sum_{j=1}^n \tau_j u(s_i,t_j).$$

Strongly dominated strategies

A second concept of what a "bad strategy" would be for a rational player in a game situation:

Defn: $\sigma \in \Delta(S)$ is strongly dominated by $\sigma' \in \Delta(S)$ if $u(\sigma', t) > u(\sigma, t)$ for all $t \in T$.

In words, strategy σ gives a worse expected payoff for player 1 tahn does strategy σ' no matter what player 2 chooses.

Equivalence of the two concepts in 2 person games

Th^m :: If there are 2 players, then $\sigma \in \Delta(S)$ is never a best reply iff there exists $\sigma' \in \Delta(S)$ s.t. σ is strongly dominated by σ' .

In words, if there is no set of beliefs for which a strategy is optimal (a best reply), then there must exist some other strategy that is better than it in all possible circumstances regarding the other player's play.