Solutions to Problem Set 3
Political Science 152/352

Question 1

(a) Set of rationalizable pure strategy profiles is the whole strategy profile space,
ie. itis {U,M,D} x {L,C, R}. One way to see this is to note that nothing in
this game can be eliminated by strict domination and to remember that in two
person games the set of rationalizable strategies is the same as the set of strate-
gies that survive iterated elimination of strictly dominated strategies. One can
also check directly that each strategy is rationalizable. Now, U is rationalized
by L. For this to make U rationalizable we need L to be rationalizable also. L
is rationalized by M. But again, to conclude that L is rationalizable we need M
to be rationalizable. M is rationalized by C' and C is rationalized by U; which
closes the loop; i.e. with these arguments we have shown that U, M for player 1
and L, C for player 2 are rationalizable. Also, D and R rationalize each other.
Hence everything is rationalizable.

(b)It is easy to check that only pure strategy Nash Equilibrium (NE) is (D,R).

There are no mixed strategy NE of this game. The strategy we will follow
to show this is to first rule out the possibility of a mixed strategy NE in which
player 1 plays all her strategies with positive probability, then rule out possibil-
ity of her playing any two of her strategies with positive probability. This will
be sufficient by either noting that the game is symmetric or noting that player
2 has a unique pure strategy best response to every pure strategy of player 1.

Assume player 2 plays L with probability =, C' with probability 7 and R
with probability 1 — 73 — 7.

Step 1 - rule out the possibility that player 1 plays all her strategies with positive
probability in a NE

If player 1 plays all her strategies with positive probability it must be the case
that she is indifferent between all of them. For her to be indifferent between U
and D, we need 11 =13 < % For R to give the same expected utility we need
10m — (1—27) = 127 +2(1 - 27y), i.e. 7y = 2 > 1. Hence, this is not possible.

Step 2 - rule out the possibility that player 1 plays U and M with positive prob-
ability and D with zero probability in o NE

For this to happen we again need 73 = 75. But whenever this is the case player
1 strictly prefers D to both U and M. This is because, in this case playing U or
M will give player 1 a compound lottery that is equivalent to a lottery giving
utility of 5 or -1, whereas playing D will give him a lottery between 6 and 2.
And in each case the probability of good outcome is 71 + 75. Hence, this is not
possible.



Step 3 - rule out the possibility that player 1 plays U and D with positive prob-
ability and M with zero probability in a NE

If player 1 plays M with zero probability then player 2 never plays L because
it is strictly dominated by R. But if player 1 never plays L, player 2 will never
play U. Hence, there is no such NE.

Step 4 - rule out the possibility that player 1 plays M and D with positive prob-
ability and U with zero probability in a NE

Similar to step 3, if player 1 does not play U, player 2 never plays C, in which
case player 1 does not play M. Hence, this kind of equilibrium is also not pos-
sible.

Therefore, there are no mixed strategy NE of this game.
Question 2

(a) S; = X = {0,1,...,100} for i = 1,2. Note that a candidate wins if and
only if the voter with ideal point 50 votes for him.
Therefore,

1if |s; — 50| < |s; — 50|
Ui(31,82) = { % if |8i - 50| = |8j - 50|

0 if |s; — 50| > |s; — 50|
(b)s; = 0 or s; = 100 are strictly dominated by s; = 50. To see this note
that for |s; — 50| = 50, s; = 0 and s; = 100 gives a utility of 1 to player i and
s; = 50 gives 1. For s; = 50, s; = 0 and s; = 100 gives 0 and s; = 50 gives %
For all other cases, s; = 0 and s; = 100 gives 0 and s; = 50 gives 1.

(c) As noted above, 0 and 100 are strictly dominated by 50 and hence are
eliminated for both players.

Consider s; = 1. This strategy gives a utility of % if s; =1 orif s; =99 and
zero otherwise. On the other hand s; = 50 gives utility of 1 if s; = 1 or if
s; = 99 and still strictly positive utility otherwise. Therefore, at this step we
can eliminate s; = 1 and similarly s; = 99 because they are strictly dominated
by S; = 50.

Note that this would not be the case if we had not eliminated s; = 0 and
s; = 100 earlier, because s; = 1 and s; = 50 would both give a utility of 1 when
s; = 0, hence we would not get strict domination.

Proceeding similarly, it can be shown that the only strategy profile that survives
iterated elimination of strictly dominated strategies is (50,50).

(d)(50,50) is a NE. To see this we need to check if any of the players has
an incentive to deviate. If s; = 50, player 2 is getting % by playing 50 and
would get 0 with any other strategy. Hence player 2 - and similarly player 1 -
has no incentive to deviate.



For uniqueness, suppose (s}, s5) is a NE. If s] < 50 and s} > 50, and if there
is no tie the losing player will have an incentive to deviate to 50. If there is a
tie both will have an incentive to deviate to 50. If s§ < 50 and s5 < 50 or if
sy > 50 and s5 > 50 then similarly, at least one of the players has an incentive
to deviate to 50 (both if there is a tie). Therefore in any NE we need at least
one player playing 50. But, 50 is the unique best response to 50. Hence, the
unique NE of this game is (50,50).

An easier way to see that this equilibrium is unique is to note that the set of
strategies that do not survive iterated elimination of strictly dominated strate-
gies are never a best response. Since the strategies played in a NE would have
to be a best response to at least to the other player’s strategy in NE, they would
not be eliminated by iterated elimination of strictly dominated strategies; i.e.
all NE strategies survive iterated elimination of strictly dominated strategies.
But in part (c) we showed that the only strategy profile that survives iterated
elimination of strictly dominated strategies is (50,50) which is later shown to be
a NE. Therefore it has to be the unique NE.

(e)It is tempting to argue that the convergence of both candidates to identi-
cal policy positions at “the middle of the road” is a bad thing, because it means
that the voters have no real “choice” and people with different preferences (more
towards the extremes) are effectively not represented. But on the other hand,
the presumption is that the candidates are choosing and implementing public
policies, which is to say that by their nature the policies have to apply to all the
people in the jurisdiction — you can’t make one public policy for some people
and a different one for others unless you put them in different jurisdictions. If
this is so, then arguably convergence at the median is a good thing, since if the
distribution of voter preferences is symmetric, this is the policy position that
minimizes the “average dissatisfaction” of all voters.

Question 3

(a) This is a 2 x 2 normal form game, which we can write as:

Army B
Defend 1 Defend 2
Attack 1 0, 0 v1, —V1
Attack 2 1,—1 0, 0

Army A

Notice that this game does not have a Nash equilibrium in pure strategies
since one army will always have an incentive to deviate: Army A’s best response
to B’s strategy is to attack the undefended target, while Army B’s best response
is to defend the target that A plan’s to attack. Since this is a finite game, by



Nash’s Theorem, a Nash equilibrium must exist, and so it must be in mixed
strategies.

Let p = Prob(D1) and let ¢ = Prob(A1l). For Army B to induce Army A to
play a mixed strategy, we must have E[u4(Al)] = E[ua(A2)]. Solving for p:

p-0+(1—p)-u p-1+(1-p)-0

(1-pv1 = p
v, = p+pun
U1
p v +1

Similarly, Army A’s mixed strategy must make Army B indifferent between
which target they attack, E[up(D1)] = E[up(D2)]. Next, solve for g¢:

-0+(1-¢)-(-1) = ¢ (-v)+(1-4q)-0
g—-1 = —qu
qg+quu = 1
1
- v+ 1

Thus, there is a unique Nash equilibrium of this game where Army A plays

the mixed strategy (——= Al , -%—A2) and Army B plays (-%- D1 ,—1-D2).
vi+1 vi+1 vi+1 vi1+1

(b) The probability that target 1 will be destroyed is
P = ¢q(1-p)

1 1 V1
v+ 1 v+ 1

1
(v1 +1)?

The probability that target 2 will be destroyed is:

P, = (1-q)p

_ %
(v1 + 1)
As vy - o0, P, — 0 and P, — 1. This result is fairly intuitive. As the

value of target 1 increases, Army B will be more likely to defend it, and as a
consequence, Army A will be less and less likely to attack it.



Question 4

(a) To specify this as a normal form game, the set of playersis I = {1,2,...,100000},
the set of strategies is S; = {P,H},Vi (P for “Protest” and H for “stay at
Home”). Let the integer n be the number of other people (not including player
1) who decide to protest—this is a shorthand way of characterizing other players’
strategies s_;. The utility function for each player is

—k-1 if s; = P,n <599

—88 k-1 ifs; = P,n € [600,9,998]
ui(si,5-i) =4q 9 if s; = P,n > 9,999

0 if s, = H,n <9,999

10 if s; = H,n > 10,000

To determine player i’s best response to s_;, there are 4 cases. (For ease of
notation, just let u(-) be the utility function above.) First, if n < 599, u(P) =
—k—1<u(H) =0= BR = H. Second if n € [600,9,998],u(P) = — 2% k-1 <
uw(H)=0= BR = H. Third, if n =9,999,u(P) =9 >u(H) =0= BR=P.

If n > 10,000,u(P) = 9 < u(H) = 10 = BR = H. To summarize, the best

response function (in terms of n) for any player 7 is

H ifn <9,998 or n > 10,000
B — — b -_ )
R(n) { P ifn=9,999

This game has two types of pure strategy Nash equilibria. There is one equilib-
rium where everyone stays home, e.g. the strategy profile S = (H, H, ..., H).
To see that this is a Nash equilibrium, note that H is a best response to every-
one else staying home, n = 0. The other set of equilibria occur where ezactly
10,000 choose to protest since when n = 9,999, player ¢ is “pivotal” in the sense
that his action (given that n is fixed) decides whether the government collapses
or not. This is clearly a severe type of coordination problem because any other
number of protesters turning out is not a Nash equilibrium.

(b) For this normal form, I and S; are the same as in part (a). The utility
function for any given player i is slightly different:

—k+1 if s; = P,n < 600

—50k+1 ifs;=Pne[601,9,998]
ui(si,5-i) = 11 if s; = P,n > 9,999

0 if s; = H,n < 9,999

10 if s; = H,n > 10,000

In this case, the best response function depends on the value of k. First,
suppose k < 9&%%9. First, if n < 599, u(P) = —-k+1<0=wu(H),so BR=H
as in part (a). If n € [600,600k — 1], staying home is still a best response, since

when n = 600k—1, u(P) = — g55b—+1 = u(H) = 0. For n € [600k, 9998],n >




600k = 8008 < 1 = —800% 11 >0 = u(P) > u(H). Even though there are
not enough people to force the overthrow of the government, the best response
is to protest because the probability of being arrested is sufficiently small. For
n = 9999, u(P) = 11 > 0 = u(H) and for n > 10000, u(P) = 11 > 10 = u(H),
so the best response is to protest even if you are not pivotal in the sense of part
(a).
Thus, if n < 600k — 1, the best response is H, and if n > 600k — 1, the
best response is P. This implies there are exactly two Nash equilibria: one
where everyone stays home, and one where everyone protests. The logic behind
the first equilibrium is the same as in part (a). Given that a citizen expects
everyone else to stay home, her best response is also to stay home. For the
second equilibrium, if a citizen expects everyone to turn out and protest, then
protesting is a best response.

There are no other Nash equilibria. If the strategy profile specifies that 600k
or less people protest, then citizens who protest have an incentive to defect and
stay home. If the strategy profile specifies that 600k or more (but less than
100, 000) people protest, then citizens who stay at home have an incentive to
turn out and protest, too.

(c) The anniversaries of other protests are “focal points” and help to co-
ordinate people’s actions. In the model here, bringing down an authoritarian
regime is a coordination problem. Given that one expects many others to turn
out and protest on an anniversary, then it is also in one’s interest to turn out
on that day to protest.

Question 5

(a) Here, the normal form consists of I = {1,2},S; € [0,00) for i = 1,2,
and utility functions:

u1(s1,82) = p(s1,82)v—kis1
= 51 v—Fkis
= it 181
ux(s1,82) = (1 —p(s1,82))v — kaso
S9 k‘
= v — kos
81 + 89 202

To find the best reponse function, first differentiate u; with respect to s; for
i =1,2, set equal to zero and solve for s;.

Oui(s1,82) VS k=0
08y B (81 + 32)2 te

89V
o2 (51 + 52)*
kq




S20

s1+s
% 1+ 82
820
s}‘z“kil—sQ
By symmetry,
81V
sgzdL—sl
ko

To solve for the Nash equilibrium, we solve these two equations for s; and ss.

s = o S
( Skl: —si)v sjv
T B Ve Y
sjv ( 3191; —si)v
]{,‘2 \ kl
sjv ( skl; — s
kz n kl
siho_ [
ke Vk T
(k1 + k2)s7 stv
ko B ko
(ki + ko)st\* _ spo
k2 k2
* 1)k‘2
S =
! (k1 -+ k2)2
And again, a symmetry argument gets us
* vkl
S5 =
2 (k1 + k2)2
(b) Let ky =1, then
v
§1 = ———
ECEEE
’Ukl
S§)y — —— ———
P (k12

As ki — 1,81 = ¥,55 — 2 and p(s1,s2) — 5. Intuitively, as the cost of 1
raising funds comes closer to 2’s cost of raising funds, each candidate spends an

equal amount and the probability of winning tends toward a 50-50 chance.



As ki1 — 0,81 = v,89 — 0. As k; decreases, the incumbent becomes rel-
atively more advantaged in terms of raising funds. When this happens, the
equilibrium spending by the incumbent tends toward the value of office v, while
the challenger’s spending tends toward 0. The probability of the incumbent’s
re-election also goes to 1.



