Solutions for Problem Set 4
Political Science 152/352

Question 1

Both tic-tac-toe and chess are finite dynamic games of complete and perfect
information. (A chess game cannot go on forever because of the rule that the
game is a draw if 50 consecutive moves are made without capturing a piece.)
The appropriate solution concept is Subgame Perfect Nash Equilibrium. Since
both tic-tac-toe and chess are finite games, we know that an equilibrium (solu-
tion) exists.

Question 2

(a) See Figure 1. There are two SGPNE of this game. Solving the game
from the back, we find that Player 2’s best response when z € {0,1,2} is to
choose Y,, and when x = 3 he is indifferent, so either Y3 or N3 would be opti-
mal. One SGPNE is where x = 3 and Sy = Y3Y1Y2Y3 and one where x = 2 and
Sa = YoY1Y2N;. The second equilibrium seems more plausible (where payoffs
are ¢ = 2,1 — x = 1) since if z = 3, Player 2 will probably feel cheated and
feel like there is no reason that Player 1 should get a payoff of 3. This story,
however, implies that we have misspecified Player 2’s payoffs.

(b) See Figure 2. Nash Equilibria are indicated with *.

(c) One Nash Equilibrium that is not subgame perfect occurs where z = 0
and S = YgN1N>N3. In words, Player 2 threatens to reject all offers where
he does not receive the full amount of the pie, and since Player 1 is indiffer-
ent between all possible offers (he will always get payoff 0 given this strategy
for Player 2). This is an example of a Nash Equilibrium that is ruled out by
subgame perfection because the strategy for Player 2 involves non-credible (in-
credible?) commitments.



Figure 1: Extensive form for Question 2
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Figure 2: Normal form for Question 2

Player 1
x=0 x=1 x=2 x=3
3, 02,1 |1,2 | 0,3
3,0 12,1 |1,2«|0,0
3,0 12,1 |0,0 | 0,3«
3,0 | 2,1 0,0 |0,0
3,0 | 0,0 [1,2 | 0,3%
3,0 10,0 | 1,2« | 0,0
3,0 10,0 |0,0 | 0,3
3,0x 1 0,0 | 0,0 | 0,0
0,0 12,1 |1,2 | 0,3
0,0 2,1 |1,2«|0,0
0,0 12,1 |0,0 | 0,3
0,0 |2,1x| 0,0 | 0,0
0,0 0,0 (1,2 | 0,3%
0,0 |0,0 |1,2«|0,0
0,0 | 0,0 |0,0 [0,3%
0,0 10,0 |0,0 | 0,0




Question 3

This problem is an application of take-it-or-leave-it bargaining to a situa-
tion of political agenda setting. It is commonly attributed to Tom Romer and
Howard Rosenthal.

(a) The agency chooses a number b from the set S4 = [0,00), so an example
of a strategy for A is b = 100. A complete strategy for the median legislator
must specify his action (either Accept or Reject) at each of his choice nodes; that
is, for each possible value of b. Since each of the legislator’s nodes corresponds
to a different value of b, we can specify a complete strategy as a function of b,
say sy : Sa — {Accept, Reject}. For example, if the legislator’s strategy is to
accept if the budget is no more than 10, then

Accept  if b <10
b) = =
s (b) { Reject ifb>10

(b) Using the suggestion, first consider the case where b* > b,,. Since the
game is a finite game of complete and perfect information, we can solve it using
backwards induction. The legislator compares his utility from the proposed
budget b and the reversion point b* and chooses to accept if and only if u,,(b) >
um(b*). Since the utility function is symmetric around the legislator’s ideal point
b, this implies that optimal play for M in each subgame proscribes Accept in
all subgames when b € [max(0, 2b,, — b*),b*] and Reject in all other subgames.
Since A’s utility is a linear monotonic function, the agency’s best reply is to
choose the highest b such that M will accept. Thus, b = b*. Formally, the
following strategies constitute a subgame perfect Nash equilibrium:

sa=0b"

_ J Accept if b€ [max(0,2b,, — b*),b*]
sm(®) = { Reject otherwise
The intuition here is that although the agency would like to propose a higher
budget, it cannot do any better than the reversion point because it anticipates
that any proposals b > b* will be rejected by M. Note that any strategy profile
where the agency proposes b > b* or b € [0,2b,, — b*] (when this interval is
nonempty) and the legislator’s strategy is the same as above will also be a
subgame perfect Nash equilibrium. This is because on the equilibrium path,
the legislator will reject such offers and the budget reverts to b*.

In the case where b* < b,,, optimal play in every subgame implies that M
Accepts if b € [b*, 2b,,, — b*] and Rejects for all other values of b. The highest b
that the agency can propose is b = 2b,,, — b*, which is greater than the reversion
point. This is the budget level that makes the legislator indifferent between the
proposal b and the reversion point b*. Formally, the SGPNE is:

s4 = 2b, —b*
Accept  if b € [b*,2b,,, — b*]
b — ’ m
s (b) { Reject otherwise



(c) See Figure 3. The agency’s preference is to set as high a budget as
possible, but it is constrained by the reversion point b* and the legislator’s
preferences. For values of the reversion point such that b* > b,,, the equilibrium
outcome just tracks the reversion point b°? = b* because the legislator will not
accept any new budget that exceeds the reversion point, and so the agency is
unable to move the budget further in its direction. This is the upward sloping
part of the graph.

For values of b* < b,,, the agency now has some structural bargaining power
because it can move the budget in its favor while still leaving the legislator as
well off as he was before. In fact, the lower b* is, the greater the agency’s power
in terms of how far (b°? — b*) it can move the budget from the reversion point.
One implication of this model is that zero-based budgeting may be undesirable.
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Figure 3: 3(c) Equilibrium budget outcomes

Question 4

(a) Below, in figure (a) the area enclosed by the diamond represents all pos-
sible per period stage game payoffs. The minmax payoff for each player is 0.
Hence, according to the Folk theorem it is possible to support everything in the
diamond, which is also in the positive ortant (that is, the area enclosed by the
diamond in figure (b)) as SGPNE payoffs.

(b) Since (Abide, Infringe) and (Infringe, Abide) are Nash equilibria of the
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Figure 4: Payoffs for Question 4a

stage game, giving player 1 and 2, respectively, their minmax payoffs it is possi-
ble to support the outcome (Abide, Abide) in every period using Nash reversion
strategies. Consider the following strategy for both players:

Play Abide on the first period. For later periods, play Abide if in all previous
periods the play has been (Abide,Abide) or (Infringe, Infringe). After any other
history, play abide if you were the first first to play Infringe; play infringe if the
other player was the first to play infringe.

Given these strategies the equilibrium path will always be (Abide, Abide),
and after a deviation by one player, the game will revert to the Nash equilibrium
giving her the minmax payoff. It is possible to support these strategies as a
SPGNE for large enough 6.

However, note that other punishment strategies are possible and these may
require smaller d’s depending on the relative values of a and . To write down
a pair of strategies to do this, it will be useful to use the concept of “phases of
play”. There are two phases of play: Punishment phase and the normal phase.
Play starts at normal phase. The transitions between two phases is determined
as follows: irrespective of what the current phase is, if players conform to their
prescribed actions, next phase is normal phase; irrespective of what the current
phase is, if at least one player does not conform to her prescribed action, next
phase is punishment phase. The structure of strategies that use this kind of
a construct will be such that if someone deviates, there will be a one period
punishment. If the defector does not let the other player punish her or if the
other player refuses to punish, there will be another period of punishment, else,
the game goes back to the “normal” play.

Now, If we specify an action for each player for each phase, we will have
specified a complete strategy pair. Consider the following strategy for both
players: Play Abide in a normal phase and play Infringe in a punishment phase.
If 3 is large enough (i.e. punishment is severe enough), this strategies can be



supported in a SGPNE with a § that is smaller than that which is required to
support the Nash reversion strategies described above.

Finally, note that the punishment phase does not have to end in one pe-
riod. It is possible to force players to play punishment for longer periods. This
will make it easier (require a smaller §) to make them play their equilibrium
strategies in a normal phase, but make it harder to make them conform to the
punishment phase strategies. It might be the case that the smallest § required is
achieved by strategies of this sort. Also, it is possible to have more complicated
punishment strategies. I will restrict attention to the two equilibrium strategy
pairs described above.

(c) First consider the Nash reversion strategies. Given the other palyer’s
strategy, playing Abide at a subgame that starts after a history of no deviations
will give the player a payoff of 1+ x 14+ 82 x14... = 11?6. Deviating will give
a payoff of « for 1 period and then 0 forever after. Hence, a player will not want
to deviate if a < ﬁ , e if § > %. We do not have to check anything
else, because the punishment strategies are Nash equilibria of the stage game.

To support the second proposed strategy pair, we need only to make sure
each player plays their prescribed action in each phase. Also remember that
we need to check only one period deviations, i.e. we will assume that after
each deviation there will be one punishment phase an then the play returns
to (Abide, Abide). Also, since the game is symmetric, it is enough to do the
checking for one player only. Playing Abide in a normal phase leads to a payoff
of 1 every period. Deviating in a normal phase gives one period of «, one period
of —(3 and then 1 forever after. Therefore, the player is willing to conform in a
normal phase if and only if {1z > a + 06 x (—f) + &5, ie, § > 2=L. Finally, if
the player plays Infringe in a punishment phase, he will get —3 for one period
and then 1 forever after and if she deviates and plays Abide, she will get one
period of 0, one period of —f3 and then 1 forever after. Therefore, she will

conform to her punishment strategy only if —3+ 25 > 0+ x (—f3) x %, ie.
if § > % Hence, the smallest ¢ required to support this equilibrium is %

whenever a — 1 > 3 and is %, otherwise. Note that in fact, in both cases the
smallest delta required to support this equilibrium is higher than that which is
required to support the Nash reversion equilibrium described above. However,
since these bounds for § involve more interesting dynamics, i will focus on them
for the comparative statics analysis.

If it is the case that a« — 1 > 3, then, a further increase in a will make
the minimum feasible § bigger, and hence will make it harder to support the
equilibrium. This is because « is the reward for deviation and bigger a makes
deviations more desirable. If § increases, but we are in the range where a —1 <
B, minimum feasible § decreases. That is because —f is the punishment payoff,
and the severer the punishment the less patience it takes to keep players on the
equilibrium path. Finally, if 8 is in the range where a — 1 > 3, then minimum
feasible § increase with an increase in 8. The reason is in a punishment phase
punisher also gets a payoff of —3 and as this number gets smaller it gets harder



to make the punishers conform to their punishment phase strategies. Finally,
note that a higher minimum feasible § means that cooperation is less likely.

Question 5

(a)Let Sk and S¢ stand for the strategy spaces and ux and uc stand for
the utility functions of the king and the citizen, respectively. Then, Sx =
Sc = [0,1]. Also, for all z € S¢ and t € Sk, uc(z,t) =1+ z(1 — 2t) and
uk(z,t) = 2xt.

To find the Nash equilibria of the game first note that the best response of
the citizen to any tax rate above % is to invest x = 0, to any tax rate below % is
to invest = 1, and she is indifferent among all levels of investment whenever
t= % On the other hand, the king’s unique strict best response to any = > 0
is to set t = 1. From this we can conclude that no Nash equilibrium can involve
any positive investment by the citizen. Because if (z,t) is an equilibrium with
z > 0, then it must be the case that ¢ = 1 - otherwise king has an incentive
to deviate. But when ¢ = 1, the citizen has an incentive to deviate to z = 0.
Therefore, in any Nash equilibrium 2 = 0. Then, the king is indifferent among
all tax rates. But to ensure that the citizen does not have an incentive to deviate
to z = 1 we need ¢t > £. Hence (x,t)=(0,t) is a Nash equilibrium of this game
for every t > %, and there are no other Nash equilibria.

This is a commitment problem. Since the king cannot commit not to con-
fiscate all the production, the citizen does not produce anything.

(b) Above, we already specified the best responses of the citizen to every tax
rate t. Given this, the king will get 0 payoff if he sets ¢ > %, but it is possible
for him to achieve positive payoff with smaller tax rates. Hence, in equilibrium
we must have ¢ < 1. Moreover, no t < 1 can be supported in equilibrium. To
see this note that whenever t < %, citizen’s unique best response is to set z = 1,
and it is always possible to increase ¢ a tiny bit while still keeping it strictly less
than % The citizen’s best response to this new tax rate will still be = 1, hence
the king will get a strictly higher payoff by deviating to this slightly higher tax
rate. These arguments establish that the unique SGPNE of this game involves
t=1.

Ks argued above, when t = %, any level of z is a best response for the citizen.
However, no < 1 can be supported in equilibrium. To see why, note that the
king is getting 2;1:% = z in this equilibrium. On the other hand any ¢’ < % will
induce player 1 to play her unique best response x = 1. Then the king will get
2t'. Whenever z < 1, it is possible to find #' close enough to but still strictly less
than % such that 2t > . Therefore, the king will have an incentive to deviate to
this tax rate t'. (Observe that these arguments would not go through if we did
not ask for subgame perfection. Since the tax rate ¢’ is off the equilibrium path,
we could not require the citizen to react optimally to that and an equilibrium
path in which t = 1 and z < 1 could be supported with an incredible threat

2
from the citizen to pick, say, x = % no matter what ¢ is, as long as it is less that



N =

).

Therefore the unique subgame perfect Nash equilibrium of this game is as
follows: t = 1; 2 = 1if t < } and = = 0 otherwise. The ability to commit on
the part of the king makes positive production possible.

(c)The outcome will be socially efficient whenever z = 1, because this max-
imizes the total payoff to the citizen and the king. Assume we are trying to
support an equilibrium in which (1,#) is played every period. Note that we
cannot have £ > % because that would give the citizen a total discounted payoff
less than her minmax payoff which is 1. Consider the following strategies:

Citizen: Play x = 1 in the first period, then keep playing x = 1 if the tax
rate has been £ for all previous periods, otherwise revert to playing z = 0
forever (i.e. revert to her strategy in the Nash equilibrium (0,1) of the
stage game.

King: Set t = f in the first period. Then keep setting ¢ =  if the investment
by the citizen has been x = 1 in all previous periods, otherwise revert to
t = 1 forever (ie, play his part in the NE of the stage game). (Remark:
Reverting to the (x,t)=(0,1) equilibrium of the stage game is arbitrary.
Any other Nash equilibrium of the stage game would do the trick in this
particular example, because they all give the same payoff to both players).

First note that the citizen will never have an incentive to deviate because

given that < % there is no deviation that would make her strictly better off

even in the one period stage game. The king is getting 2f+2tx 6+ ... = 25 in

equilibrium. His best deviation would be to confiscate everything, which would
give him a payoff of 2 for one period and then 0 forever after. Therefore, he will
not want to deviate as long as {2 > 2, or equivalently § > 1 — £.

(d)The payoff of the citizen is decreasing in ¢, therefore, she will be best
of when t is set to its smallest supportable value. By the previous part, it
must be the case that § > 1 — . Therefore, for a given §, the smallest tax
rate that can be supported is 1 — 4§, and that will give the citizen a payoff of
2(1 —¢) =2(1— 1+ 6) = 2.

(e)Locke had argued that if people were really as opportunistic and self-
interested as Hobbes made out, then who would be such a fool as to want to
live under a government in which a single person was all-powerful? This would
just be a recipe for exploitation, and one might do better fending for oneself
with no such government. Hobbes could (and to an extent did) reply that
the sovereign would have a self-interested reason not to exploit the citizens too
much, as doing so would reduce their output and thus his tax revenues. The
repeated game here shows how in principle the sovereign credibly could commit
to a nonconfiscatory tax rate by "bonding” her reputation.



